skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pinkava, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As reliance on Machine Learning (ML) systems in real-world decision-making processes grows, ensuring these systems are free of bias against sensitive demographic groups is of increasing importance. Existing techniques for automatically debiasing ML models generally require access to either the models’ internal architectures, the models’ training datasets, or both. In this paper we outline the reasons why such requirements are disadvantageous, and present an alternative novel debiasing system that is both data- and model-agnostic. We implement this system as a Reinforcement Learning Agent and through extensive experiments show that we can debias a variety of target ML model architectures over three benchmark datasets. Our results show performance comparable to data- and/or model-gnostic state-of-the-art debiasers. 
    more » « less